

OPA337, OPA2337 OPA338, OPA2338

SBOS077B - JUNE 1997 - REVISED MARCH 2005

MicroSIZE, Single-Supply CMOS OPERATIONAL AMPLIFIERS MicroAmplifier™ Series

FEATURES

- MicroSIZE PACKAGES: SOT23-5, SOT23-8
- SINGLE-SUPPLY OPERATION
- RAIL-TO-RAIL OUTPUT SWING
- FET-INPUT: I_B = 10pA max
- HIGH SPEED:

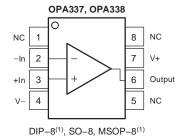
OPA337: 3MHz, 1.2V/ μ s (G = 1) OPA338: 12.5MHz, 4.6V/ μ s (G = 5)

- OPERATION FROM 2.5V to 5.5V
- HIGH OPEN-LOOP GAIN: 120dB
- LOW QUIESCENT CURRENT: 525µA/amp
- SINGLE AND DUAL VERSIONS

APPLICATIONS

- BATTERY-POWERED INSTRUMENTS
- PHOTODIODE PRE-AMPS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT
- AUDIO SYSTEMS
- DRIVING ADCs
- CONSUMER PRODUCTS

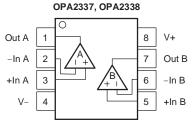
SPICE model available at www.ti.com.


DESCRIPTION

The OPA337 and OPA338 series rail-to-rail output CMOS operational amplifiers are designed for low cost and miniature applications. Packaged in the SOT23-8, the OPA2337EA and OPA2338EA are Texas Instruments' smallest dual op amps. At 1/4 the size of a conventional SO-8 surface-mount, they are ideal for space-sensitive applications.

Utilizing advanced CMOS technology, the OPA337 and OPA338 op amps provide low bias current, high-speed operation, high open-loop gain, and rail-to-rail output swing. They operate on a single supply with operation as low as 2.5V while drawing only 525µA quiescent current. In addition, the input common-mode voltage range includes ground—ideal for single-supply operation.

The OPA337 series is unity-gain stable. The OPA338 series is optimized for gains greater than or equal to 5. They are easy-to-use and free from phase inversion and overload problems found in some other op amps. Excellent performance is maintained as the amplifiers swing to their specified limits. The dual versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.


	G = 1 S	TABLE	G ≥ 5 S	TABLE
PACKAGE	SINGLE OPA337	DUAL OPA2337	SINGLE OPA338	DUAL OPA2338
SOT23-5	~		~	
SOT23-8		~		~
MSOP-8	V			
SO-8	/	~	V	~
DIP-8	V	~		

NC = No Connection

Out 1 5 V+ V- 2 + - 4 - In SOT23-5

OPA337, OPA338

NOTE: (1) DIP AND MSOP-8 versions for OPA337, OPA2337 only.

DIP-8⁽¹⁾, SO-8, SOT23-8

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SBOS077B - JUNE 1997 - REVISED MARCH 2005

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage 7.5V
Input Voltage(2) $(V-) - 0.5V$ to $(V+) + 0.5V$
Input Current ⁽²⁾
Output Short Circuit ⁽³⁾ Continuous
Operating Temperature55°C to +125°C
Storage Temperature55°C to +125°C
Junction Temperature
Lead Temperature (soldering, 10s)

- (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.
- (2) Input signal voltage is limited by internal diodes connected to power supplies. See text.
- (3) Short-circuit to ground, one amplifier per package.

180

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe

proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	DESCRIPTION	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY		
OPA337 Series									
		0.0700.5	DBV		007	OPA337NA/250	Tape and Reel, 250		
		SOT23-5	DBA		C37	OPA337NA/3K	Tape and Reel, 3000		
		MSOP-8	DGK		G37	OPA337EA/250	Tape and Reel, 250		
OPA337	Single, G = 1 Stable	MSOP-8	DGK	-40°C to +85°C	G37	OPA337EA/2K5	Tape and Reel, 2500		
	0 = 1 Glabic	DIP-8	Р		OPA337PA	OPA337PA	Rails		
		SO-8	D		OPA337UA	OPA337UA	Rails		
		Surface-Mount	D		OPA337UA	OPA337UA/2K5	Tape and Reel, 2500		
		SOT23-8 DCN		A7	OPA2337EA/250	Tape and Reel, 250			
	Dual, G = 1 Stable	,	/	30123-6	DCN		Α/	OPA2337EA/3K	Tape and Reel, 3000
OPA2337				,	1 11P-8 P 100°C to ±95°C	OPA2337PA	OPA2337PA	Rails	
						SO-8	OPA2337UA	OPA2337UA	Rails
		Surface-Mount	Б		OFA23370A	OPA2337UA/2K5	Tape and Reel, 2500		
OPA338 Series									
		SOT23-5	DBV		A38	OPA338NA/250	Tape and Reel, 250		
OPA338	Single,	30123-3	DBV	-40°C to +85°C	ASO	OPA338NA/3K	Tape and Reel, 3000		
OFA336	G ≥ 5 Stable	SO-8	D	-40 C to +65 C	OPA338UA	OPA338UA	Rails		
		Surface-Mount	D		OFA3360A	OPA338UA/2K5	Tape and Reel, 2500		
		SOT23-8	DCN		A8	OPA2338EA/250	Tape and Reel, 250		
OPA2338	Dual,	30123-0	DCN	-40°C to +85°C	Ao	OPA2338EA/3K	Tape and Reel, 3000		
OFA2330	G ≥ 5 Stable	SO-8	D	-40 C to +65°C	OPA2338UA	OPA2338UA	Rails		
		Surface-Mount	D		OFA2330UA	OPA2338UA/2K5	Tape and Reel, 2500		

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

ELECTRICAL CHARACTERISTICS: $V_S = 2.7V$ to 5.5V Boldface limits apply over the specified temperature range, -40°C to +85°C, $V_S = 5V$.

At $T_A = +25^{\circ}C$ and $R_L = 25k\Omega$ connected to $V_S/2$, unless otherwise noted.

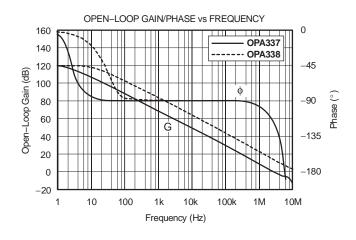
	-			A337, OPA2 A338, OPA2		
PARAMETER		CONDITION	MIN	TYP(1)	MAX	UNIT
OFFSET VOLTAGE						
Input Offset Voltage	Vos			±0.5	±3	mV
$T_A = -40^{\circ}C$ to $+85^{\circ}C$					±3.5	mV
vs Temperature	dV _{OS} /dT			±2		μV/°C
vs Power-Supply Rejection Ratio	PSRR	$V_S = 2.7V \text{ to } 5.5V$		25	125	μV/V
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		$V_S = 2.7V \text{ to } 5.5V$			125	μV/V
Channel Separation (dual versions)		dc		0.3		μV/V
INPUT BIAS CURRENT						
Input Bias Current	I_{B}			±0.2	±10	pА
$T_A = -40^{\circ}C$ to $+85^{\circ}C$			Se	ee Typical Cu	rve	
Input Offset Current	los			±0.2	±10	pА
NOISE						
Input Voltage Noise, f = 0.1Hz to 10Hz				6		μVpp
Input Voltage Noise Density, f = 1kHz	en			26		nV/√ Hz
Current Noise Density, f = 1kHz	i _n			0.6		fA/√Hz
INPUT VOLTAGE RANGE	- 11					
Common-Mode Voltage Range	VCM	$T_{\Delta} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$	-0.2		(V+) - 1.2	V
Common-Mode Rejection Ratio	CMRR	$-0.2V < V_{CM} < (V+) - 1.2V$	74	90	(* ')	dB
T _A = -40°C to +85°C	• • • • • • • • • • • • • • • • • • • •	-0.2V < V _{CM} < (V+) - 1.2V	74			dB
INPUT IMPEDANCE		Sim v				
Differential				1013 2		Ω pF
Common-Mode				1013 4		Ω pF
OPEN-LOOP GAIN						-
Open-Loop Voltage Gain	AOI	$R_{I} = 25k\Omega$, $125mV < V_{O} < (V+) - 125mV$	100	120		dB
$T_A = -40^{\circ}C$ to $+85^{\circ}C$	02	$R_L = 25k\Omega$, $125mV < V_O < (V+) - 125mV$	100			dB
		$R_L = 5k\Omega$, 500mV < V_O < (V+) – 500mV	100	114		dB
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		$R_L = 5k\Omega$, 500mV < V_O < $(V+) - 500mV$	100			dB
OPA337 FREQUENCY RESPONSE						
Gain-Bandwidth Product	GBW	V _S = 5V, G = 1		3		MHz
Slew Rate	SR	V _S = 5V, G = 1		1.2		V/µs
Settling TIme: 0.1%		V _S = 5V, 2V Step, C _L = 100pF, G = 1		2		μs
0.01%		V _S = 5V, 2V Step, C _L = 100pF, G = 1		2.5		μs
Overload Recovery Time		$V_{IN} \times G = V_S$		2		μs
Total Harmonic Distortion + Noise	THD+N	$V_S = 5V$, $V_O = 3V_{PP}$, $G = 1$, $f = 1kHz$		0.001		%
OPA338 FREQUENCY RESPONSE						
Gain-Bandwidth Product	GBW	V _S = 5V, G = 5		12.5		MHz
Slew Rate	SR	V _S = 5V, G = 5		4.6		V/μs
Settling TIme: 0.1%		V _S = 5V, 2V Step, C _L = 100pF, G = 5		1.4		μs
0.01%		V _S = 5V, 2V Step, C _L = 100pF, G = 5		1.9		μs
Overload Recovery Time		$V_{IN} \times G = V_S$		0.5		μs
Total Harmonic Distortion + Noise	THD+N	$V_S = 5V$, $V_O = 3V_{PP}$, $G = 5$, $f = 1kHz$		0.0035		%

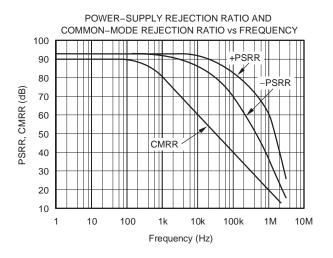
⁽¹⁾ $V_S = 5V$.

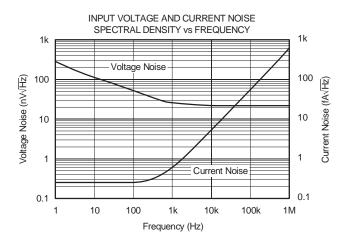
⁽²⁾ Output voltage swings are measured between the output and negative and positive power-supply rails.

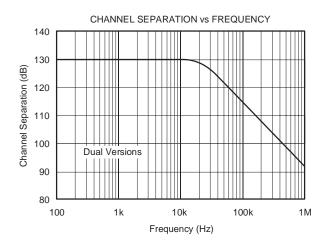
ELECTRICAL CHARACTERISTICS: $V_S = 2.7V$ to 5.5V (continued) Boldface limits apply over the specified temperature range, -40°C to +85°C, $V_S = 5V$.

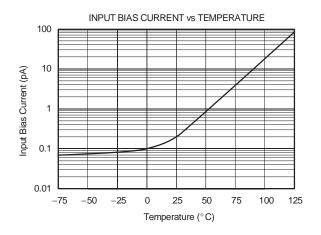
At T_A = +25°C and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

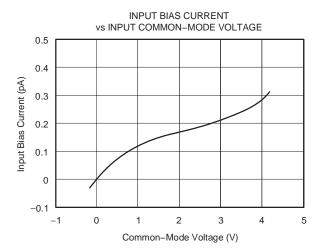

				A337, OPA23 A338, OPA2		
PARAMETER		CONDITION	MIN	TYP(1)	MAX	UNIT
OUTPUT						
Voltage Output Swing from Rail ⁽²⁾		$R_L = 25k\Omega$, $A_{OL} \ge 100dB$		40	125	mV
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		$R_L = 25k\Omega$, $A_{OL} \ge 100dB$			125	mV
		$R_L = 5k\Omega$, $A_{OL} \ge 100dB$		150	500	mV
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		$R_L = 5k\Omega$, $A_{OL} \ge 100dB$			500	mV
Short-Circuit Current				±9		mA
Capacitive Load Drive			Se	ee Typical Cu	rve	
POWER SUPPLY						
Specified Voltage Range	٧s	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	2.7		5.5	V
Minimum Operating Voltage				2.5		V
Quiescent Current (per amplifier)	IQ	IO = 0		0.525	1	mA
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		IO = 0			1.2	mA
TEMPERATURE RANGE						
Specified Range			-40		+85	°C
Operating Range			-55		+125	°C
Storage Range			-55		+125	°C
Thermal Resistance	θ JA					
SOT23-5 Surface-Mount				200		°C/W
SOT23-8 Surface-Mount				200		°C/W
MSOP-8				150		°C/W
SO-8 Surface-Mount				150		°C/W
DIP-8				100		°C/W

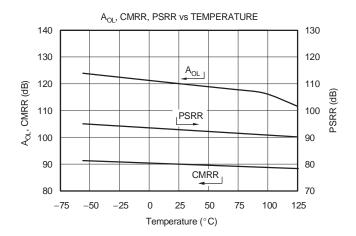

⁽²⁾ Output voltage swings are measured between the output and negative and positive power-supply rails.

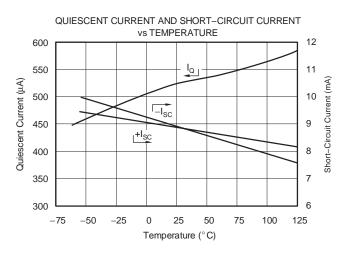


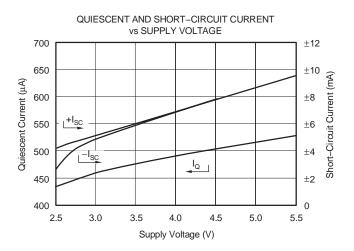

TYPICAL CHARACTERISTICS

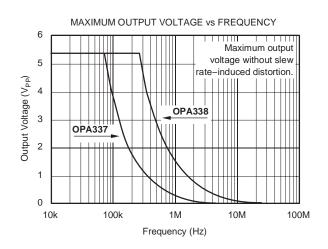

At $T_A = +25^{\circ}C$, $V_S = +5V$, and $R_L = 25k\Omega$ connected to $V_S/2$, unless otherwise noted.

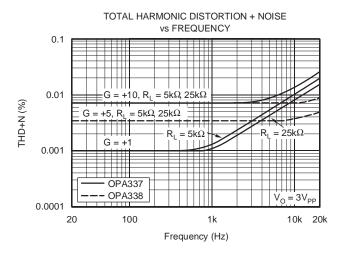


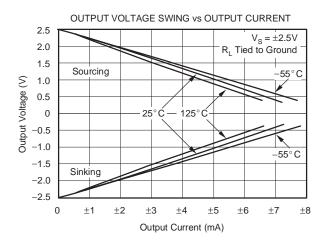


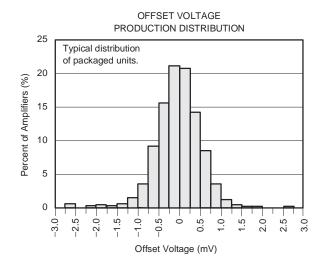


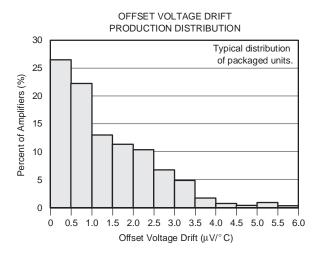


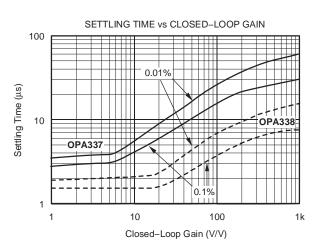

TYPICAL CHARACTERISTICS (continued)

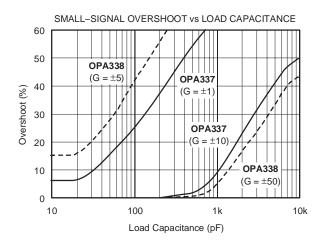

At $T_A = +25$ °C, $V_S = +5V$, and $R_L = 25k\Omega$ connected to $V_S/2$, unless otherwise noted.

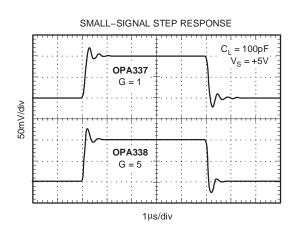


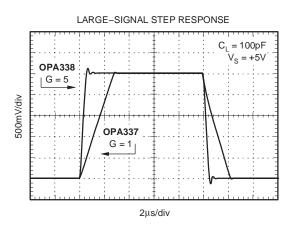







TYPICAL CHARACTERISTICS (continued)


At $T_A = +25$ °C, $V_S = +5V$, and $R_L = 25k\Omega$ connected to $V_S/2$, unless otherwise noted.



APPLICATIONS INFORMATION

The OPA337 and OPA338 series are fabricated on a state-of-the-art CMOS process. The OPA337 series is unity-gain stable. The OPA338 series is optimized for gains greater than or equal to 5. Both are suitable for a wide range of general-purpose applications. Power-supply pins should be bypassed with $0.01\mu F$ ceramic capacitors.

OPERATING VOLTAGE

The OPA337 series and OPA338 series can operate from a +2.5V to +5.5V single supply with excellent performance. Unlike most op amps which are specified at only one supply voltage, these op amps are specified for real-world applications; a single limit applies throughout the +2.7V to +5.5V supply range. This allows a designer to have the same assured performance at any supply voltage within the specified voltage range. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in the Typical Characteristic curves.

INPUT VOLTAGE

The input common-mode range extends from (V-) - 0.2V to (V+) - 1.2V. For normal operation, inputs should be limited to this range. The absolute maximum input voltage is 500mV beyond the supplies. Inputs greater than the input common-mode range but less than maximum input voltage, while not valid, will not cause any damage to the op amp. Furthermore, if input current is limited the inputs may go beyond the power supplies without phase inversion (as shown in Figure 1) unlike some other op amps.

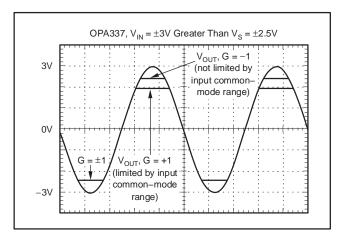


Figure 1. OPA337—No Phase Inversion with Inputs Greater than the Power-Supply Voltage

Normally, input currents are 0.2pA. However, large inputs (greater than 500mV beyond the supply rails) can cause excessive current to flow in or out of the input pins. Therefore, as well as keeping the input voltage below the maximum rating, it is also important to limit the input current to less than 10mA. This is easily accomplished with an input resistor as shown in Figure 2.

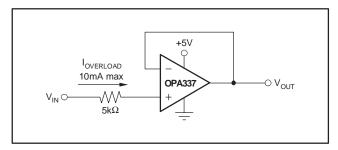


Figure 2. Input Current Protection for Voltages
Exceeding the Supply Voltage

USING THE OPA338 IN LOW GAINS

The OPA338 series is optimized for gains greater than or equal to 5. It has significantly wider bandwidth (12.5MHz) and faster slew rate (4.6V/ μ s) when compared to the OPA337 series. The OPA338 series can be used in lower gain configurations at low frequencies while maintaining its high slew rate with the proper compensation.

Figure 3 shows the OPA338 in a unity-gain buffer configuration. At dc, the compensation capacitor C_1 is effectively *open* resulting in 100% feedback (closed-loop gain = 1). As frequency increases, C_1 becomes lower impedance and closed-loop gain increases, eventually becoming $1 + R_2/R_1$ (in this case 5, which is equal to the minimum gain required for stability).

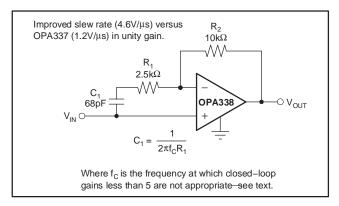


Figure 3. Compensation of the OPA338 for Unity-Gain Buffer

The required compensation capacitor value can be determined from the following equation:

$$C_1 = 1/(2\pi f_C R_1)$$

Since f_C may shift with process variations, it is recommended that a value less than f_C be used for determining C_1 . With $f_C=1$ MHz and $R_1=2.5k\Omega$, the compensation capacitor is about 68pF.

The selection of the compensation capacitor C_1 is important. A proper value ensures that the closed-loop circuit gain is greater than or equal to 5 at high frequencies. Referring to the *Open-Loop Gain vs Frequency* plot in the Typical Characteristics section, the OPA338 gain line (dashed in the curve) has a constant slope (-20dB/decade) up to approximately 3MHz. This frequency is referred to as f_C . Beyond f_C the slope of the curve increases, suggesting that closed-loop gains less than 5 are not appropriate.

Figure 4 shows a compensation technique using an inverting configuration. The low-frequency gain is set by the resistor ratio while the high-frequency gain is set by the capacitor ratio. As with the noninverting circuit, for frequencies above f_C the gain must be greater than the recommended minimum stable gain for the op amp.

Figure 4. Inverting Compensation Circuit of the OPA338 for Low Gain

Resistors R_1 and R_2 are chosen to set the desired dc signal gain. Then the value for C_2 is determined as follows:

$$C_2 = 1/(2\pi f_C R_2)$$

C₁ is determined from the desired high-frequency gain (G_H):

$$C_1 = (G_H - 1) \times C_2$$

For a desired dc gain of 2 and high-frequency gain of 10, the following resistor and capacitor values result:

$$R_1 = 10k\Omega$$
 $C_1 = 150pF$ $R_2 = 5k\Omega$ $C_2 = 15pF$

The capacitor values shown are the nearest standard values. Capacitor values may need to be adjusted slightly to optimize performance. For more detailed information, consult the section on *Low Gain Compensation* in the OPA846 data sheet (SBOS250) located at www.ti.com.

Figure 5 shows the large-signal transient response using the circuit given in Figure 4. As shown, the OPA338 is stable in low gain applications and provides improved slew rate performance when compared to the OPA337.

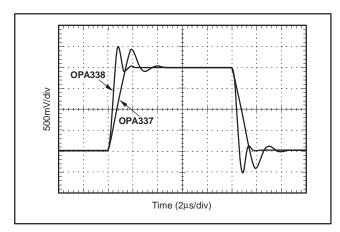


Figure 5. G = 2, Slew-Rate Comparison of the OPA338 and the OPA337

TYPICAL APPLICATION

See Figure 6 for the OPA2337 in a typical application. The ADS7822 is a 12-bit, micropower, sampling analog-to-digital converter available in the tiny MSOP-8 package. As with the OPA2337, it operates with a supply voltage as low as +2.7V. When used with the miniature SOT23-8 package of the OPA2337, the circuit is ideal for space-limited and low-power applications. In addition, the OPA2337's high input impedance allows large value resistors to be used which results in small physical capacitors, further reducing circuit size. For further information, consult the ADS7822 data sheet (SBAS062) located at www.ti.com.

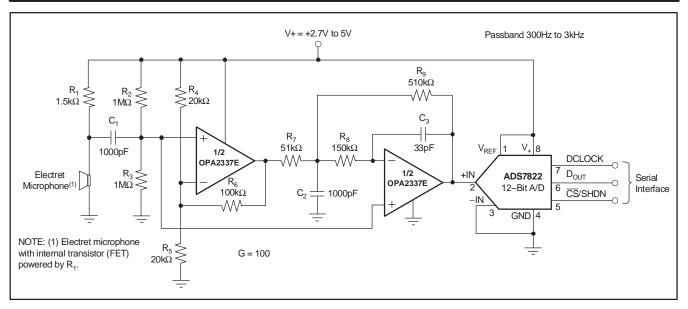


Figure 6. Low-Power, Single-Supply, Speech Bandpass Filtered Data Acquisition System

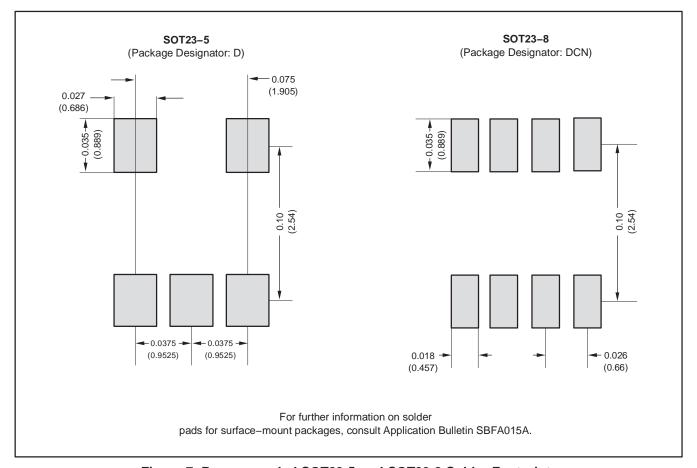


Figure 7. Recommended SOT23-5 and SOT23-8 Solder Footprints

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
OPA2337EA/250	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337EA/250G4	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337EA/3K	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337EA/3KG4	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337PA	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
OPA2337PAG4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
OPA2337UA	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2337UAG4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2338EA/250	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA2338EA/250G4	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA2338EA/3K	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA2338EA/3KG4	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA2338UA	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2338UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2338UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA2338UAG4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337EA/250	ACTIVE	MSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337EA/250G4	ACTIVE	MSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337EA/2K5	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337EA/2K5G4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA337NA/250G4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA337NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

5-May-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
OPA337NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OPA337PA	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
OPA337PAG4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
OPA337UA	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA337UAG4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338NA/250G4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338UA	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
OPA338UAG4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

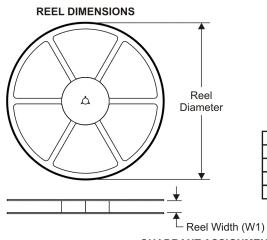
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

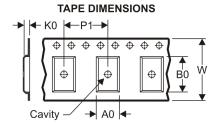
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

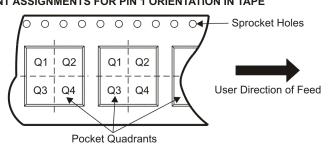
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

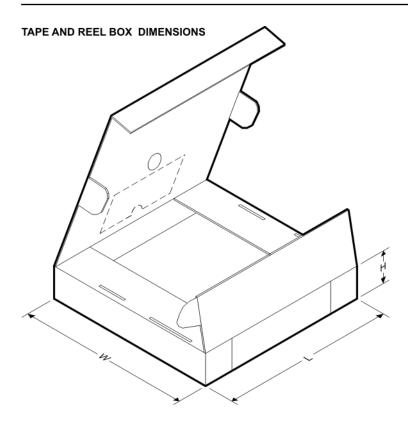

PACKAGE OPTION ADDENDUM


5-May-2008

In no event shall TI's liability arising out of such information exceed the total purchase price to Customer on an annual basis.	of the TI part(s) at issue in this document sold by T
to Customer on an annual basis.	

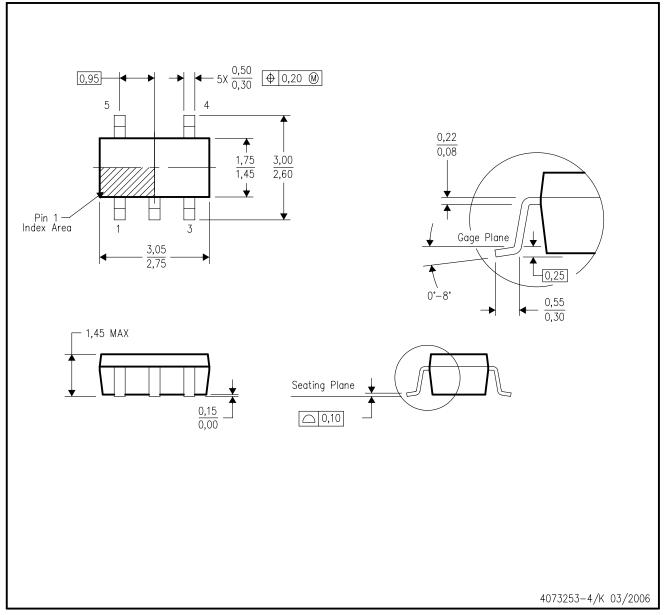

TAPE AND REEL INFORMATION

Δ	10	Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
		Overall width of the carrier tape
		Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2337EA/250	SOT-23	DCN	8	250	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2337EA/3K	SOT-23	DCN	8	3000	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2337EA/3KG4	SOT-23	DCN	8	3000	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2337UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA2338EA/250	SOT-23	DCN	8	250	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2338EA/3K	SOT-23	DCN	8	3000	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2338UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA337EA/250	MSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA337EA/2K5	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA337NA/3K	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
OPA337UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA338NA/250	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA338NA/3K	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3

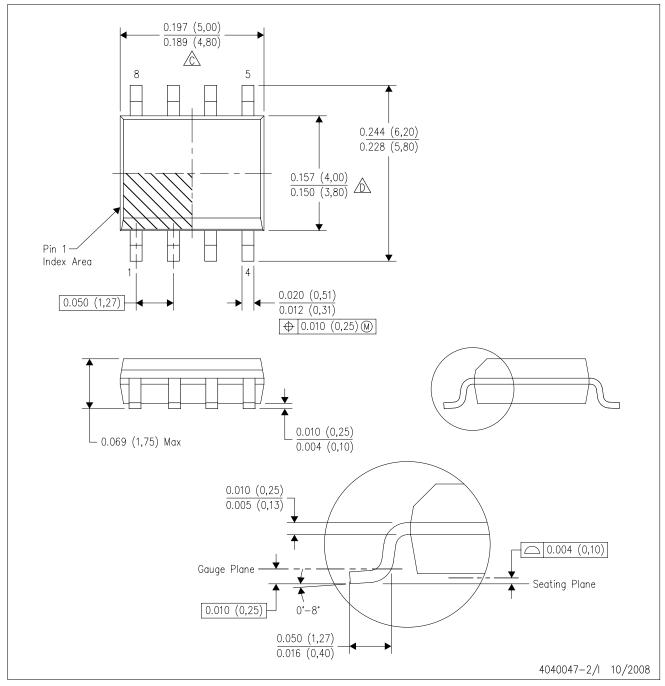


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2337EA/250	SOT-23	DCN	8	250	190.5	212.7	31.8
OPA2337EA/3K	SOT-23	DCN	8	3000	190.5	212.7	31.8
OPA2337EA/3KG4	SOT-23	DCN	8	3000	190.5	212.7	31.8
OPA2337UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA2338EA/250	SOT-23	DCN	8	250	184.0	184.0	50.0
OPA2338EA/3K	SOT-23	DCN	8	3000	184.0	184.0	50.0
OPA2338UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA337EA/250	MSOP	DGK	8	250	184.0	184.0	50.0
OPA337EA/2K5	MSOP	DGK	8	2500	346.0	346.0	29.0
OPA337NA/3K	SOT-23	DBV	5	3000	195.0	200.0	45.0
OPA337UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA338NA/250	SOT-23	DBV	5	250	214.0	199.0	55.0
OPA338NA/3K	SOT-23	DBV	5	3000	214.0	199.0	55.0

DBV (R-PDSO-G5)

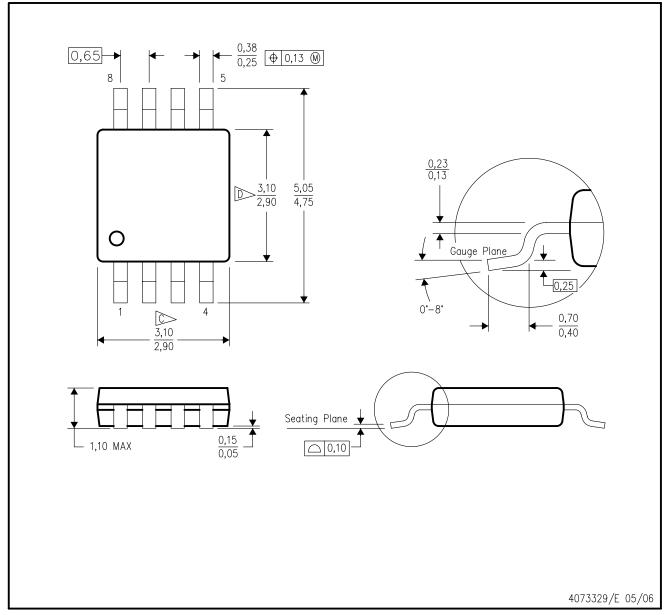
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

D (R-PDSO-G8)

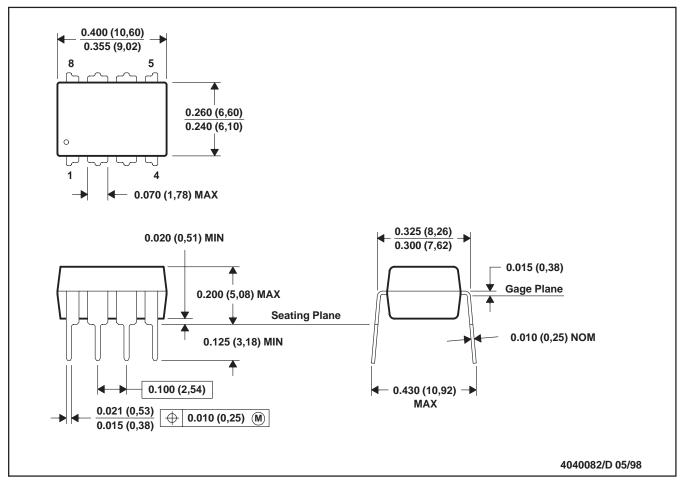
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

DGK (S-PDSO-G8)

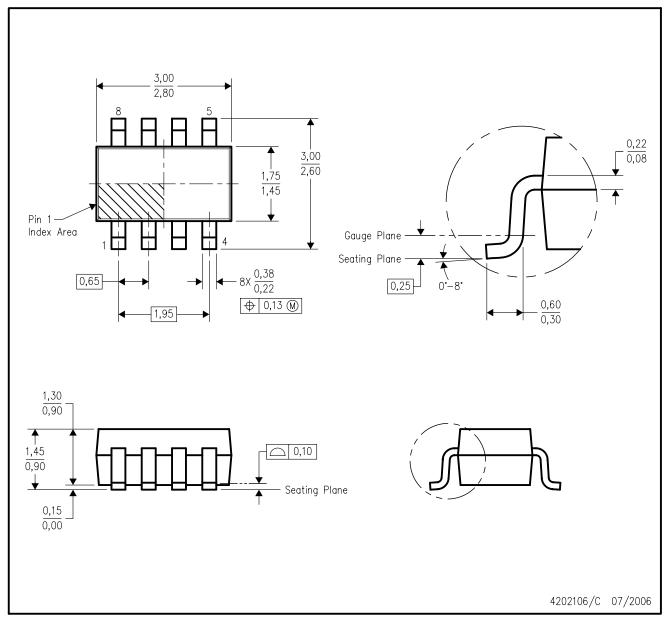
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of mold flash, metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated